Quick Start

Calculate Fairness Metrics

# Import binary and multi-class fairness metrics
from jurity.fairness import BinaryFairnessMetrics, MultiClassFairnessMetrics

# Data
binary_predictions = [1, 1, 0, 1, 0, 0]
multi_class_predictions = ["a", "b", "c", "b", "a", "a"]
multi_class_multi_label_predictions = [["a", "b"], ["b", "c"], ["b"], ["a", "b"], ["c", "a"], ["c"]]
is_member = [0, 0, 0, 1, 1, 1]
classes = ["a", "b", "c"]

# Metrics (see also other available metrics)
metric = BinaryFairnessMetrics.StatisticalParity()
multi_metric = MultiClassFairnessMetrics.StatisticalParity(classes)

# Scores
print("Metric:", metric.description)
print("Lower Bound: ", metric.lower_bound)
print("Upper Bound: ", metric.upper_bound)
print("Ideal Value: ", metric.ideal_value)
print("Binary Fairness score: ", metric.get_score(binary_predictions, is_member))
print("Multi-class Fairness scores: ", multi_metric.get_scores(multi_class_predictions, is_member))
print("Multi-class multi-label Fairness scores: ", multi_metric.get_scores(multi_class_multi_label_predictions, is_member))

Calculate Probabilistic Fairness Metric

# Import binary fairness metrics from Jurity
from jurity.fairness import BinaryFairnessMetrics

# Instead of 0/1 deterministic membership at individual level
# consider likelihoods of membership to protected classes for each sample
binary_predictions = [1, 1, 0, 1]
memberships = [[0.2, 0.8], [0.4, 0.6], [0.2, 0.8], [0.9, 0.1]]

# Metric
metric = BinaryFairnessMetrics.StatisticalParity()
print("Binary Fairness score: ", metric.get_score(binary_predictions, memberships))

# Surrogate membership: consider access to surrogate membership at the group level.
surrogates = [0, 2, 0, 1]
print("Binary Fairness score: ", metric.get_score(binary_predictions, memberships, surrogates))
      

Fit and Apply Bias Mitigation

# Import binary fairness metrics and mitigation
from jurity.fairness import BinaryFairnessMetrics
from jurity.mitigation import BinaryMitigation

# Data
labels = [1, 1, 0, 1, 0, 0, 1, 0]
predictions = [0, 0, 0, 1, 1, 1, 1, 0]
likelihoods = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.1]
is_member = [0, 0, 0, 0, 1, 1, 1, 1]

# Bias Mitigation
mitigation = BinaryMitigation.EqualizedOdds()

# Training: Learn mixing rates from labeled data
mitigation.fit(labels, predictions, likelihoods, is_member)

# Testing: Mitigate bias in predictions
fair_predictions, fair_likelihoods = mitigation.transform(predictions, likelihoods, is_member)

# Results: Fairness before and after
print("Fairness Metrics Before:", BinaryFairnessMetrics().get_all_scores(labels, predictions, is_member), '\n'+30*'-')
print("Fairness Metrics After:", BinaryFairnessMetrics().get_all_scores(labels, fair_predictions, is_member))

Calculate Recommenders Metrics

# Import recommenders metrics
from jurity.recommenders import BinaryRecoMetrics, RankingRecoMetrics
import pandas as pd

# Data
actual = pd.DataFrame({"user_id": [1, 2, 3, 4], "item_id": [1, 2, 0, 3], "clicks": [0, 1, 0, 0]})
predicted = pd.DataFrame({"user_id": [1, 2, 3, 4], "item_id": [1, 2, 2, 3], "clicks": [0.8, 0.7, 0.8, 0.7]})

# Metrics
ctr = BinaryRecoMetrics.CTR(click_column="clicks")
ncdg_k = RankingRecoMetrics.NDCG(click_column="clicks", k=3)
precision_k = RankingRecoMetrics.Precision(click_column="clicks", k=2)
recall_k = RankingRecoMetrics.Recall(click_column="clicks", k=2)
map_k = RankingRecoMetrics.MAP(click_column="clicks", k=2)

# Scores
print("CTR:", ctr.get_score(actual, predicted))
print("NCDG:", ncdg_k.get_score(actual, predicted))
print("Precision@K:", precision_k.get_score(actual, predicted))
print("Recall@K:", recall_k.get_score(actual, predicted))
print("MAP@K:", map_k.get_score(actual, predicted))

Calculate Classification Metrics

# Import classification metrics
from jurity.classification import BinaryClassificationMetrics

# Data
labels = [1, 1, 0, 1, 0, 0, 1, 0]
predictions = [0, 0, 0, 1, 1, 1, 1, 0]
likelihoods = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.1]
is_member = [0, 0, 0, 0, 1, 1, 1, 1]

# Available: Accuracy, F1, Precision, Recall, and AUC
f1_score = BinaryClassificationMetrics.F1()

print('F1 score is', f1_score.get_score(predictions, labels))